

LNG Serviceman's & Liquid Cylinder Manual

SAFETY INSTRUCTIONS

For your safety and improved service life of the product, please read this manual before use and follow the safety instructions carefully. Throughout this manual, items appearing in Bold Text highlight conditions that can result in serious injury.

The LNG Vehicle Tank Equipment Service Manual

RegO[®] has prepared this LNG Vehicle Tank Equipment Service Manual for use by equipment installers and others requiring a reference for field service work to LNG fueling system equipment. This manual deals with subjects that can be useful to LNG field operators and technicians looking to improve system safety and performance.

Only qualified personnel should perform installation and maintenance. Be sure all instructions are read and understood before installation, operation, and maintenance.

For more in depth technical inquiries, consult the liquid cylinder manufacturer.

This manual is not intended to conflict with federal, state or local ordinances and regulations. These should be observed at all times.

This information is intended to be forwarded throughout the product distribution chain. Additional copies are available from RegO Master Distributors.

Contents

INFORMATION ABOUT LNG	3
SAFETY PRECAUTIONS	4
PHYSICAL & CHEMICAL PROPERTIES	ō
COMPARISON BETWEEN LNG AND OTHER FUELS	5
SATURATED VAPOR PRESSURES OF LNG	
LNG VEHICLE FUEL TANK	7
GENERAL PLUMBING COMPONENTS	8
1. FILL RECEPTACLE	9
2. FILL CHECK VALVE	17
3. PRIMARY RELIEF VALVE	
4. QUICK DISCONNECT VENT (QDV) VALVE	
5. VAPOR (SHUTOFF) VALVE	23
6. SECONDARY RELIEF VALVE	
7. PRESSURE BUILDER	
8. PRESSURE BUILDER (SHUTOFF) VALVE	32
9. ECONOMIZER	35
10. INTERNAL CHECK VALVE	
11. FUEL (SHUTOFF) VALVE	
12. EXCESS FLOW VALVE	
13. FINAL LINE REGULATOR	43
PRESSURE AND LEAK TESTING	
REPAIR OF THE SHUTOFF VALVE BONNET	47
DETERMINING AGE OF REGO® MACRO PRODUCTS	50
CONVERTING VOLUMES OF GAS	50
CONVERSION UNITS	
MAINTENANCE LOG	54

INFORMATION ABOUT LNG

Natural gas is odorless, colorless, non-toxic, and noncorrosive. Natural gas is predominantly methane with small amounts of carbon dioxide, nitrogen, ethane, and propane. Liquefied natural gas, or LNG, is natural gas that has been converted temporarily to liquid form for ease of storage or transport. Natural gas is condensed into a liquid at approximately -258°F (-161°C) under normal atmospheric pressure. LNG takes up about 1/600th the volume of natural gas in the gaseous state. **Hazards include flammability, freezing, and asphyxia. LNG will also build extremely high pressures as it warms from a cryogenic liquid to a room temperature gas.**

Safety Precautions

- Follow all national, state, provincial, and local regulations, standards, codes, and laws when installing or using our products.
- Follow manufacturers' installation and operation instructions.
- Keep the equipment area well ventilated. Confined spaces can result in a buildup of natural gas if there is a leak.
- When handling LNG, proper personal protective equipment including protective clothing, suitable gloves, and face protection must be used at all times.
- Prior to any maintenance to the system, the fuel tank should be isolated and all natural gas should be properly purged from piping using established safety procedures.
- Keep system away from open flames or other sources of ignition to prevent fire or explosion.
- Use non-sparking tools to tighten LNG connections or hoses.
- Prevent intrusion of debris into the system.

PHYSICAL & CHEMICAL PROPERTIES

Chemical Formula	CH4
Physical State at 15° C or 1 atm	Gas
Molecular Weight	>16 g/mol
Boiling Point at 1 atm	-258°F (-161°C)
Freezing Point	-296°F (-182°C)
Critical Temperature	-116°F (-82°C)
Critical Pressure	673 psia (4.64 MN/m)
Specific Gravity (liquid)	0.415-0.450 @ -260°F (-162°C)
Liquid Surface Tension	0.014 N/m @ -161°C
Vapor Specific Gravity (gas)	0.55-1.0
Heat of Combustion	-21,600 to -23,400 Btu/lb, -12,000 to -13,000cal/g, -502 to 544 x 105 J/kg

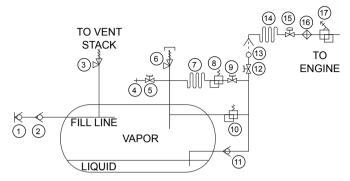
Commercial quality LNG. Figures shown in this chart represent average values.

COMPARISON BETWEEN LNG AND OTHER FUELS

	LNG	PROPANE	DIESEL
Btu Per Gallon	82,644	91,000	139,000
Gallons Per MMBtu	12.1	10.99	7.19
Relative Energy Density	1.00	1.10	1.68
Ignition Temperature (°F)	1004	842	437
Leaks & Spills	Vaporizes to Atmosphere	Gathers in low areas	Puddles on ground
Boiling Point (°F)	-260	-44	370+

SATURATED VAPOR PRESSURES OF LNG*

Temperature		Approxin	nate Pressure
(°F)	(°C)	PSIG	BARG
-290	-179	2.640	0.182
-288	-178	3.006	0.207
-286	-177	3.412	0.235
-284	-176	3.861	0.266
-282	-174	4.355	0.300
-280	-173	4.898	0.338
-278	-172	5.494	0.379
-276	-171	6.146	0.424
-274	-170	6.858	0.473
-272	-169	7.633	0.526
-270	-168	8.474	0.584
-268	-167	9.387	0.647
-266	-166	10.370	0.715
-264	-164	11.440	0.789
-262	-163	12.590	0.868
-260	-162	13.820	0.953
-258	-161	15.150	1.045
-256	-160	16.570	1.142
-254	-159	18.100	1.248
-252	-158	19.720	1.360
-250	-157	21.460	1.480
-248	-156	23.310	1.607
-246	-154	25.270	1.742
-244	-153	27.360	1.886
-242	-152	29.580	2.039
-240	-151	31.920	2.201


*Conversion Formula: Degrees C = (°F - 32) X 5/9 Degrees F = 9/5 X °C + 32

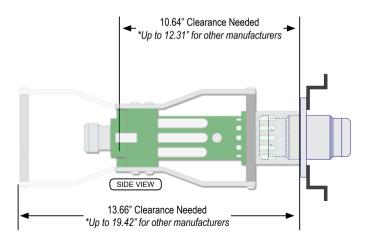
LNG VEHICLE FUEL TANK

The LNG fuel tank is a cryogenic container meaning that it stores the natural gas fuel as a highly refrigerated liquid at low pressure. These fuel tanks are typically of stainless steel double-wall, vacuum jacketed construction with extremely efficient insulation between the walls. Vehicular fuel tanks may be at pressures anywhere from less than 5 psig to over 250 psig. LNG must be maintained to remain a liquid, independent of pressure. The insulation, as efficient as it is, will not keep the temperature of LNG cold by itself. LNG will stay at near constant temperature if kept at constant pressure. This phenomenon is called "auto-refrigeration". As long as the LNG vapor boil off is exhausted from the tank, the temperature will remain constant. If the vapor is not drawn off, then the pressure and temperature inside the vessel will rise.

GENERAL PLUMBING COMPONENTS

ITEM	COMPONENT	PAGE
1	FILL RECEPTACLE	9
2	FILL CHECK VALVE	17
3	PRIMARY RELIEF VALVE	18
4	VENT VALVE	21
5	VAPOR (SHUT OFF) VALVE	23
6	SECONDARY RELIEF VALVE	26
7	PB COIL	
8	PRESSURE BUILDER	29
9	PB (SHUTOFF) VALVE	32
10	ECONOMIZER	35
11	INTERNAL CHECK VALVE	37
12	FUEL (SHUTOFF) VALVE	38
13	EXCESS FLOW VALVE	41
14	FUEL HEAT EXCHANGER	
15	AUTOMATIC SHUTOFF VALVE	
16	STRAINER VALVE	
17	OVER PRESSURE REGULATOR	

1. FILL RECEPTACLE



Mounted to the collar of the tank, the Fill Receptacle is connected to the tank with a pipe or hose. It is designed to allow fluid flow into the tank and is the connecting point to the re-fueling station. Permitting a cryogenic pressure transfer during fueling, it provides a positive shutoff to prevent fuel leakage when disconnected. A receptacle cap (such as p/n 13665) that effectively seals the receptacle is recommended to limit the intrusion of contaminants. Dust caps that do not seal will allow dirt, grit, and other debris to enter the system and severely impact the receptacle seal performance. The RegO Macro CryoMac®3 nozzle should be used for the best compatibility in mating with the RegO Macro receptacle when filling the vehicle fuel tank.

RegO Macro Fill Receptacle Part Numbers: MFR5008,MFR5010,MFR5011,MFR5013

1. FILL RECEPTACLE (continued)

- 1. Ensure piping system connections are clean and free of any debris.
- 2. Select an appropriate location to mount the fill receptacle allowing clearance for the fill nozzle to properly engage the receptacle during fueling.
- 3. Follow all national, state, provincial, and local regulations, standards, codes, and laws for pressure testing and leak testing the installation.

1. FILL RECEPTACLE (continued)

Maintenance and Inspection

Periodically Check for:

- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the internal poppet/seal and end connections of the valve. Check the connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as they can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

WARNING: Installation, usage and maintenance of this product must be in compliance with all RegO® instructions as well as all requirements and provisions of national, and local standards, codes, regulations, and laws. Inspection and maintenance on a periodic basis is essential. Only qualified personnel should perform installation and maintenance. Be sure all instructions are read and understood before installation, operation and maintenance. These instructions must be passed on to the end user of the valve.

CAUTION: Avoiding the inhalation of, or skin contact with compressed and cryogenic gases is advised. Many of these gases can cause asphyxiation, serious injury or death. See MSDS for specific information regarding the safe handling of the service gas. Evacuation of gas should take place in a well-ventilated area to ensure dispersion. Keep gases far from open flames or other sources of ignition to prevent fire or explosion.

Note: Suitable for use on Liquid Natural Gas (LNG). **Requirements for Replacement**

MFR50-T01 Hex Tool 7/6" Socket and Torque Wrench MFR50-80 Seat AssemblyKit Seat Ring Poppet Spring Guide

DISASSEMBLY

- 1. Vent the pressure contained between the receptacle and the fill check valve, using a nozzle with a hose that vents to atmosphere.
- 2. Clean the receptacle internally and externally to remove contamination using air or nitrogen pressure.
- 3. Using the MFR50-T01 hex tool and 7/8" socket and torque wrench, remove and discard the seat assembly. Continue to step 4 for poppet replacement, otherwise go to Reassembly steps.

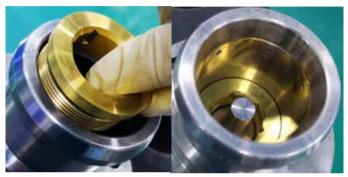
4. Remove and discard poppet assembly.

NOTE: For better performance of the receptacle after maintenance, it is recommended to replace both the seat assembly and poppet together.

REASSEMBLY

1. Clean the receptacle internally using air or nitrogen pressure, and clean the new poppet assembly (if being replaced) and seat assembly. Skip to step 3 if not replacing the poppet.

CAUTION: It is necessary to clean components thoroughly to prevent any foreign particles from entering the cylinder as these contaminants could damage the seals and injection system.



2. Install the poppet into the body, making sure the poppet assembly is properly centered in the body.

3. Apply 0.08 ml of lubricant (grease) suitable for the application that is oxygen-compatible and rated to the low temperatures to male seat threads and install into the body.

CAUTION: The use of lubricants (grease) incompatible for low temperature [-260°F (-162°C)] will cause crystallization of the lubricant and premature leakages.

4. Put the MFR50-T01 hex tool on the seat and finger tighten, then use a 7/8" socket and torque wrench to torque to 100±5 N.m (73.8 ft-lbs).

FUELING CAP

The RegO Macro Fueling Cap features an interior O-ring seal and filtered breather. The O-ring seals the receptacle's vent holes while a garter spring along the ID of the Fueling Cap holds the cap securely onto the receptacle. These unique features provide a seal rather than just a cover.

RegO Macro Fueling Cap Part Number: 13665

2. FILL CHECK VALVE

Direction of flow stamped on valve

The Fill Check Valve is a back pressure check valve used to prevent backflow through the fill line. The soft seated design should not be regarded as a positive shutoff valve. RegO® Macro Fill Check Valve Part Number: NG304

Installation

During installation, consider the flow of fuel that should enter the inlet side of the valve and flow in the direction of the arrow stamped on the side of the valve. Ensure the piping system connections are clean and free of any debris. Pipe sealants should be applied to the male mating threads of the pipe fittings used to install the valve into the system.

Maintenance and Inspection

NG304 check valves are not designed to be repaired nor reconditioned.

Periodically Check for:

1. Any signs of corrosion;

2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure;

3. Leaks from the connections or valve joints.

3. PRIMARY RELIEF VALVE

The Primary Relief Valve is designed to relieve excess pressure in the system caused by thermal expansion of the fuel or pressure created during filling. LNG fuel systems are required to have at least two pressure relief valves. The primary relief valve should be set at no more than the maximum allowable working pressure of the tank. These valves are used to vent vapor to the atmosphere if the tank pressure exceeds the prescribed set pressure of the valve. The set pressure is labeled on the valve. Discharge from the pressure relief valve should be unobstructed and directed away from containers and piping system. A liquid drain opening at the bottom of vent stack is recommended.

RegO® Relief Valve Part Number: 9400 Series

3. PRIMARY RELIEF VALVE (continued)

Installation

Finger tighten the relief valve, and then use the proper wrench to tighten the valve to the appropriate torque setting found in the chart below. These figures are based on the use of PTFE tape as a pipe lube and assuming that the coupling into which the valve is installed is within +/-1 turn from the base. Pipeaways and deflectors may be required by local codes, laws, and regulations depending on the installation. Use only RegO® adapters for RegO® relief valves. Adapters not designed specifically for piping away RegO® relief valves, such as those with 90° turns or reduced internal diameters, will decrease flow dramatically. These adapters should never be used as they can cause the relief valve to chatter, shortening the life of the valve.

NPT Size	Installation Torque
1/4"	18-22 ft-lbs (25-30 N-m)
3/8"	44-48 ft-lbs (60-66 N-m)
1/2"	70-75 ft-lbs (95-102 N-m)

3. PRIMARY RELIEF VALVE (continued)

Maintenance and Inspection

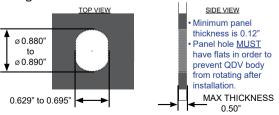
RegO[®] pressure relief valves are not designed to be repaired nor reconditioned. If a valve needs to be replaced, do not replace with a higher pressure relief valve.

Periodically Check for:

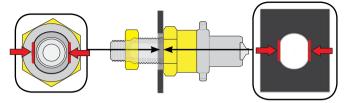
- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the flange connection and stoppage in the relief orifice. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as they can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

Care must be taken when inspecting the pressure relief valve. Do not look directly into the relief orifice while it is connected to the system, or severe personal injury can occur.

4. QUICK DISCONNECT VENT (QDV) VALVE



Panel mounted to the collar of the tank, the Male Quick Disconnect Vent Valve (or Vapor Return Valve) is used to equalize pressure between the fueling supply container and the vehicle fuel tank.


RegO Macro Quick Disconnect Vent Valve Part Numbers: 12895, 14000, 14410

Installation

- 1. Ensure piping system connections are clean and free of any debris.
- 2. Follow all national, state, provincial, and local regulations, standards, codes, and laws for pressure testing and leak testing the installation.
- 3. Valve should only be opened and handled in a clean, dry area.
- 4. Select an appropriate location to mount the valve allowing clearance for the vent coupler to properly engage the valve during venting. Refer to recommended panel hole dimensions below in order to prevent QDV body from rotating after installation.

4. QUICK DISCONNECT VENT (QDV) VALVE (continued)

Installation (continued)

- 5. Remove bulkhead nut.
- 6. Slide body of Male QDV through panel. Make sure antirotation flats on Male QDV body are aligned with flats on panel hole.
- 7. Replace bulkhead nut. Torque to 30-40 ft/lbs.

Maintenance and Inspection

Periodically Check for:

- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the internal poppet/seal and end connections of the valve. Check the connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.
- 4. Replace bulkhead nut. Torque to 30-40 ft/lbs.

5. VAPOR (SHUTOFF) VALVE

The Vapor Valve is a Manual Shutoff Valve with a soft seat design used to provide a positive shutoff to the vapor withdraw line for service and maintenance operations to the Vent Valve. It is designed to stop flow in both directions. However, the flow arrow on the valve indicates inlet to outlet orientation. The inlet should be positioned toward the side typically under higher pressure than the outlet to guarantee the proper flow capacity during the fuel injection system operation. During operation, ensure all threads engage smoothly and easily. Do not hammer or force the valve in any manner. To close the valve, turn the handwheel clockwise until it stops. Do not over torque the handwheel after the seat disc has engaged the seat. Doing so may cause seat damage.

RegO® Manual Shutoff Valve Part Number: T9464 Series

5. VAPOR (SHUTOFF) VALVE (continued)

Installation

Before the valve can be welded into place, turn the handwheel counterclockwise to backseat the seat disc, avoiding damage to the seat during heating.

- 1. Wrap a thoroughly wet towel around the valve body to prevent heat damage to valve components while welding.
- 2. Ensure connections are clean and free of any debris.
- 3. Position the valve such that the flow arrow is in the proper direction.
- 4. Weld the pipe connection of the valve body to the piping system. Follow all national, regional and/or local codes, standards, and specifications for proper welding procedures.
- 5. If the valve has a threaded inlet or outlet connection, then apply a sealant that is appropriate to the male threads of the connection.
- 6. Restrain the valve with a vice or suitable wrench, and using an appropriate wench for connection, tighten the connection to the body using standard NPT engagement 2-3 wrench turns beyond hand tight. The torque shown below is for reference only.
- Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area
 with clean water.

5. VAPOR (SHUTOFF) VALVE (continued)

NPT Size	Torque (+/-10%)
1/4"	22 ft-lbs (30 N-m)
3/8"	38 ft-lbs (52 N-m)
1/2"	55 ft-lbs (75 N-m)

Maintenance and Inspection

Periodically Check for:

- 1. Any signs of corrosion;
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure;
- 3. Leaks in the valve bonnet area, body, and end connections of the valve. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

6. SECONDARY RELIEF VALVE

The Secondary Pressure Relief Valve is designed to relieve excess pressure in the system caused by thermal expansion of the fuel or pressure created during filling. LNG fuel systems are required to have at least two pressure relief valves. These valves are used to vent vapor to the atmosphere if the tank pressure exceeds the prescribed set pressure of the valve. The set pressure is labeled on the valve. The secondary relief valve is used to prevent a catastrophic failure in the unlikely event the primary relief valve malfunctions. A protective cap should be applied to the secondary relief valve and should never be piped away. Discharge from the pressure relief valve should be unobstructed and directed away from containers and the piping system. The pressure relief valve cap must be loosely fitted to exclude water or debris entering the vent but not restrict free discharge of gas.

RegO® Relief Valve Part Number: PRV9400TP Series

6. SECONDARY RELIEF VALVE (continued)

Installation

Finger tighten the relief valve, and then use the proper wrench to tighten the valve to the appropriate torque setting found in the chart below. These figures are based on the use of PTFE tape as a pipe lube and assuming that the coupling into which the valve is installed is within +/-1 turn from the basic. Pipeaways and deflectors may be required by local codes, laws, and regulations depending on the installation. Use only RegO® adapters for RegO® relief valves. Adapters not designed specifically for piping away RegO® relief valves, such as those with 90° turns or reduced internal diameters, will decrease flow dramatically. These adapters should never be used as they can cause the relief valve to chatter, shortening the life of the valve.

NPT Size	Installation Torque
1/4"	18-22 ft-lbs (25-30 N-m)
3/8"	44-48 ft-lbs (60-66 N-m)
1/2"	70-75 ft-lbs (95-102 N-m)

6. SECONDARY RELIEF VALVE (continued)

Maintenance and Inspection

RegO[®] pressure relief valves are not designed to be repaired or reconditioned. If a valve needs to be replaced, then do not replace with a higher pressure relief valve.

Periodically Check for:

- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the flange connection and stoppage in the relief orifice. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

Care must be taken when inspecting the pressure relief valve. Do not look directly into the relief orifice while it is connected to the system, or severe personal injury can occur.

Caution

DO NOT INSTALL PRESSURE RELIEF VALVES WITH DIFFERENT PRESSURE SETTINGS THAN INDICATED BY THE MANUFACTURER. The installation of pressure relief valves with a higher setting could cause damage to the equipment, system and/or cause injury to personel.

7. PRESSURE BUILDER

The Pressure Builder is a regulator designed to maintain pressure in the tank, it is used to allow LNG to flow into a pressure building system to increase pressure above the regulator setting and help maintain fuel temperature according to the operational condition of the system. These regulators are suitable for use in liquid and gas service. Over-pressurization of cryogenic equipment can occur due to phase change from liquid to gas if not vented properly. Never uncouple the regulator from the piping system until all pressure has been released from the lines.

RegO® Pressure Builder Part Number: RG Series

7. PRESSURE BUILDER (continued)

Installation

- 1. Clean dirt and foreign material from all piping and fittings, inside and out.
- 2. Apply a pipe joint compound suitable for the gas service (such as PTFE tape) to the male threads on the piping. Take care not to apply any compound or tape to the first thread in order to avoid minute particles from breaking off and lodging on the seat.
- 3. Be sure the inlet and outlet of the regulator are correctly installed in-line according to the designed flow pattern and markings of the regulator body.
- 4. Position the regulator to protect vents from the elements of ice, snowdrifts, rain, dirt, bugs, paint, or other foreign material.
- 5. Follow all national, state, provincial, and local regulations, standards, codes, and laws for pressure testing and leak testing the installation.

7. PRESSURE BUILDER (continued)

Maintenance and Inspection

To set the regulator outlet pressure:

- 1. Loosen the locknut by turning counterclockwise.
- 2. Increase pressure by turning the adjusting screw clockwise, decrease by turning the adjusting screw counterclockwise.
- 3. After achieving the desired pressure, cycle the regulator several times by operating a downstream flow control device. Readjust if necessary.
- 4. While holding the adjusting screw from turning, tighten the locknut by turning clockwise.

Periodically Check for:

- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants;
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure;
- 3. Leaks in the end connections of the regulator. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.
- 4. Proper operation as foreign matter may affect the performance of the regulator.

8. PRESSURE BUILDER (SHUTOFF) VALVE

The Pressure Builder Valve is a Manual Shutoff Valve with a soft seat design and is used to provide a positive shutoff of fuel to the Pressure Building Circuit. When the Pressure Builder Valve is closed the tank pressure may decrease below the set pressure of the Pressure Builder. It is designed to stop flow in both directions. However, the flow arrow on the valve indicates inlet to outlet orientation. The inlet should be positioned towards the side typically under higher pressure than the outlet. During operation, ensure all threads engage smoothly and easily. Do not hammer or force the valve in any manner. To close the valve, turn the handwheel clockwise until it stops. Do not over torque the handwheel after the seat disc has engaged the seat, doing so may cause seat damage. RegO® Manual Shutoff Valve Part Number: T9464 Series

8. PRESSURE BUILDER (SHUTOFF) VALVE (continued)

Installation

Before the valve can be welded into place, turn the handwheel counterclockwise to backseat the seat disc, avoiding damage to the seat during heating.

- 1. Wrap a thoroughly wet towel around the valve body to prevent heat damage to valve components while welding.
- 2. Ensure connections are clean and free of any debris.
- 3. Position the valve such that the flow arrow is in the proper direction.
- 4. Weld the pipe connection of the valve body to the piping system. Follow all national, regional and/or local codes, standards, and specifications for proper welding procedures.
- 5. If the valve has a threaded inlet or outlet connection, apply a sealant that is appropriate to the male threads of the connection.
- 6. Restrain the valve with a vice or suitable wrench, and using an appropriate wench for connection, tighten the connection to the body using standard NPT engagement 2-3 wrench turns beyond hand tight. The torques shown below is for reference only.
- 7. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

8. PRESSURE BUILDER (SHUTOFF) VALVE (continued)

NPT Size	Torque (+/-10%)
1/4"	22 ft-lbs (30 N-m)
3/8"	38 ft-lbs (52 N-m)
1/2"	55 ft-lbs (75 N-m)

Maintenance and Inspection

Periodically Check for:

- 1. Any signs of corrosion.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the valve bonnet area, body, and end connections of the valve. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

9. ECONOMIZER

The Economizer is a pressure reducing valve that is open at pressures above the set pressure labeled on the bonnet to avoid that the pressure relief valves open. It is used to allow vapor to flow into the fuel line during vehicle operation to reduce the tank pressure to the valve set pressure. Flow through the economizer is not directional, in that it is open whenever the fuel line pressure is above the set pressure. The economizer does not function as a regulator; thus, it cannot be adjusted for a specific outlet pressure. These valves are suitable for use in liquid and gas service. Never uncouple the valve from the piping system until all pressure has been released from the lines.

RegO® Economizer Part Number: ECL502 Series

9. ECONOMIZER (continued)

Installation

- 1. Clean dirt and foreign material from all piping and fittings, inside and out.
- 2. Apply a pipe joint compound suitable for gas service (such as PTFE tape) to the male threads on the piping. Take care not to apply any compound or tape to the first thread, in order to avoid minute particles from breaking off and lodging on the seat.
- 3. Position the Economizer to protect vents from the elements.
- 4. Follow all national, state, provincial, and local regulations, standards, codes, and laws for pressure testing and leak testing the installation.

Maintenance and Inspection

Periodically Check for:

- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants;
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure;
- 3. Leaks in the end connections of the economizer. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.
- 4. Proper operation as foreign matter may affect the performance of the economizer.

10. INTERNAL CHECK VALVE

Direction of flow -----

The Internal Check Valve is a ball check valve that allows fluid flow in only one direction. It is designed to equalize pressure between the tank and the liquid withdrawal line with a metal to metal seat, providing permissible leakage back into the tank to avoid over pressurization.

RegO® Macro Internal Check Valve Part Number: NG301

Installation

The internal check valve is located inside of the plumbing manifold on the tank. Apply thread sealant to the male threads of the check valve prior to installation. Use a check valve wrench designed to fasten the valve into the manifold.

Maintenance and Inspection

Periodically Check for:

1. Any signs of corrosion.

- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks from the connections. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

11. FUEL (SHUTOFF) VALVE

Direction of flow stamped on valve

The Vapor Valve is a Manual Shutoff Valve with a soft seat design used to provide a positive shutoff to the fuel line for service and maintenance operations to any downstream components. It is designed to stop flow in both directions. However, the flow arrow on the valve indicates inlet to outlet orientation. The inlet should be positioned toward the side typically under higher pressure than the outlet. During operation, ensure all threads engage smoothly and easily. Do not hammer or force the valve in any manner. To close the valve, turn the handwheel clockwise until it stops. Do not over torque the handwheel after the seat disc has engaged the seat, doing so may cause seat damage.

RegO® Manual Shutoff Valve Part Number: T9464 Series

11. FUEL (SHUTOFF) VALVE (continued)

Installation

Before the valve can be welded into place, turn the handwheel counterclockwise to backseat the seat disc, to avoid damage to the seat during heating.

- 1. Wrap a thoroughly wet towel around the valve body to prevent heat damage to valve components while welding.
- 2. Ensure connections are clean and free of any debris.
- 3. Position the valve such that the flow arrow is in the proper direction.
- 4. Weld the pipe connection of the valve body to the piping system. Follow all national, regional and/or local codes, standards, and specifications for proper welding procedures.
- 5. If the valve has a threaded inlet or outlet connection, then apply a sealant that is appropriate to the male threads of the connection.
- 6. Restrain the valve with a vice or suitable wrench, and using an appropriate wench for connection, tighten the connection to the body using standard NPT engagement 2-3 wrench turns beyond hand tight. The torque shown below is for reference only.
- 7. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

NPT Size	Torque (+/-10%)
1/4"	22 ft-lbs (30 N-m)
3/8"	38 ft-lbs (52 N-m)
1/2"	55 ft-lbs (75 N-m)

11. FUEL (SHUTOFF) VALVE (continued)

Maintenance and Inspection

Periodically Check for:

- 1. Any signs of corrosion.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the valve bonnet area, body, and end connections of the valve. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

12. EXCESS FLOW VALVE

The Excess Flow Valve is a hard metal seated valve designed to close when the fuel flow exceeds the prescribed flow rate. It is used to prevent the uncontrolled release of fuel in the event of line rupture or other system failure. When closed. the metal seat allows for small flow to pass by allowing the valve to reset when system pressure equalizes. If the damage is only a crack or if the piping is crushed at the point of failure, then the escaping flow will be restricted and may or may not pass sufficient fuel to cause the excess flow valve to close. While in its normal open position, the Excess Flow Valve permits the flow of liquid or gas in either direction. Flow is controlled in only one direction. It is stamped with an arrow showing the direction in which the flow is controlled. If the flow in that direction exceeds the predetermined rate, the valve automatically closes. Refer to the RegO® catalog LNG-500 for the closing flow.

RegO[®] Macro Excess Flow Valve Part Number: NG303

12. EXCESS FLOW VALVE (continued)

Installation

The standard excess flow outlet consists of a 2 pieces ferrule type tube fitting. The tubing wall thickness should be per fitting manufacturers' specification (Swagelok[®], or equivalent) for gas service.

Since excess flow valves depend on flow for closure, the line leading away from the excess flow valve should be large enough so that it will not excessively restrict the flow. If the pipe run is restricted by numerous elbows and tees or other fittings, then consideration should be given to the use of larger size pipe and fittings. Never use a pipe size smaller than that of the excess flow valve.

Maintenance and Inspection

RegO excess flow valves are not designed to be repaired or reconditioned.

Periodically Check for:

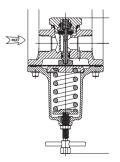
1. Any signs of corrosion;

2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure;

3. Leaks from the connections or valve joints. Check all connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as it can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

Excess flow valves should be tested and proven at the time of installation and at periodic intervals not to exceed 180months. The test should include a simulated break in the line by the quick opening of a shutoff valve. If the valve closes under these conditions, then it is reasonable to assume that it will close in the event of excess flow conditions.

13. FINAL LINE REGULATOR



The 1784NG Series Regulators are designed for final line pressure regulation on Natural Gas Fuel distribution systems. The 1784NG Series Regulators are engineered with unique design features ideal for LNG engine fuel applications.

RegO[®] Macro Final Line Regulator Part Number: 1784NG Series

Installation

It is recommended to position the bonnet drain hole toward the ground in order to prevent contaminants from entering the bonnet and to allow draining of condensate (shown below).

13. FINAL LINE REGULATOR (continued)

Installation (continued)

The use of a line-strainer upstream of the regulator is recommended to prevent contamination and even damage to the valve seat.

- 1. Apply a pipe joint compound suitable for natural gas service (such as PTFE tape) to the male threads on the piping.
- 2. Clean dirt and foreign matter from all piping and fittings.
- 3. Follow all national, state, provincial, and local regulations, standards, codes, and laws for pressure testing and leak testing the installation.

Note: The purpose of this valve is to reduce the line pressure. IT IS NOT A SAFETY DEVICE

Maintenance and Inspection

To set the regulator outlet pressure:

- 1. Loosen the locknut by turning counterclockwise.
- 2. Increase pressure by turning the adjusting screw clockwise; decrease by turning the adjusting screw counterclockwise.
- 3. After achieving the desired pressure, cycle the regulator several times by operating a downstream flow control device. Readjust if necessary.
- 4. While holding the adjusting screw to prevent from turning, tighten the locknut by turning clockwise.

13. FINAL LINE REGULATOR (continued)

Maintenance and Inspection (continued)

Periodically Check for:

- 1. Any signs of corrosion due to water, salt, industrial pollutants, chemicals, and roadway contaminants.
- 2. Any physical damage that would prevent proper sealing and usage or that may cause product failure under pressure.
- 3. Leaks in the end connections of the regulator. Check the connections with a suitable leak detecting solution. Do not use detergent soaps that contain ammonia as they can cause stress corrosion cracking. If you are unsure, then after conducting the leak test rinse the affected area with clean water.

Proper operation as foreign matter may affect the performance of the regulator.

PRESSURE AND LEAK TESTING

INSTALLATION

Follow all local or national codes and standards for pressure testing and leak checking the installation of all components before startup of the system. After assembly, all piping system components shall be tested and proved free of leaks at a pressure not less than the maximum operating pressure of the system. Allow sufficient time for thread sealants to cure before testing. Small leaks can be detected through bubble testing. A commercially available, non-corrosive bubble test solution should be used, not soap. Most soap contains chlorine and surfactants that can breakdown sealants and cause stresscracking. The system shall be leak-tested in accordance with the governing construction code or standard. All leaks shall be repaired.

LNG SYSTEM COMPONENT REPLACEMENT

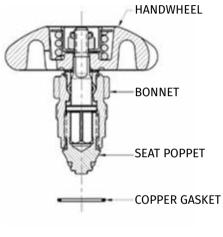
Original RegO parts must be used for any repair or replacement. Never remove the system components without relieving all pressure in the system line under maintenance by properly purging the piping using established safety procedures. In the event that the component cannot be isolated by closing shutoff valves, purge the tank of fuel and release all pressure from the system using established safety procedures prior to performing any work. For components that can be isolated from the tank by closing shutoff valves, be sure to check the pressure of the system line under maintenance prior to performing any work.

REPAIR OF THE SHUTOFF VALVE BONNET

RegO® T9464-80 Repair kit for T9464 Series Valves

A. Disassembly: Note: Discard all components that are removed from the valve.

- 1. Open the valve by turning the handwheel counterclockwise to the full open position and evacuate trapped gas from the system. NOTE: If the bonnet wrench flats can be accessed by a wrench without removing the handwheel skip Step 2 and proceed to Step 3.
- 2. Using a large adjustable wrench to hold the valve and support the valve body, remove the bonnet assembly by turning the bonnet counterclockwise with a 13/16" wrench. The wrench must be capable of developing at least 1100 in-lbs (92 ft-lbs) torque.
- 3. Remove the copper gasket from the valve body.
- 4. Inspect the valve body and clean if necessary. Ensure interior and seal areas are free of dirt, residue, and foreign particles.
- 5. Cycle the valve stem opened and closed several times to ensure smooth operation.
- 6. Slowly pressurize the system. Check valve for proper operation and all seal points for leaks by inspecting thoroughly, using a high quality leak detection solution. Do not use detergent soaps that contain ammonia as they can cause stress corrosion cracking.


REPAIR OF THE SHUTOFF VALVE BONNET (continued)

- B. Reassembly:
- 1. Remove the copper gasket from the wire tie on the new bonnet assembly.
- 2. Position the new copper gasket in the valve body on the shoulder in the valve body below the threads.
- 3. Holding the new bonnet in one hand, turn the handwheel counterclockwise to ensure that the seat poppet seat poppet is in the fully open (backseated) position.
- 4. Thread new bonnet into the valve body until hand tight.
- 5. While supporting the valve body with the appropriately sized adjustable wrench, tighten the Bonnet into the valve body using a 13/16" wrench to 900-1100 in-lbs (75-92 ft-lbs).

NOTE: DO NOT REMOVE THE HANDWHEEL . A 13/16" crowfoot wrench can be used in conjunction with a torque wrench and socket extension to tighten the bonnet assembly to the proper torque.

- 6. Cycle the valve stem opened and closed several times to ensure smooth operation.
- Slowly pressurize the system. Check valve for proper operation and all seal points for leaks by inspecting thoroughly, using a high quality leak detection solution.

REPAIR OF THE SHUTOFF VALVE BONNET (continued)

BONNET ASSEMBLY

DETERMINING AGE OF REGO® MACRO PRODUCTS

After 1990 -- digit-Letter-digit date Code

First digit in date code is the month

- 1 January 7 July
- 2 February 8 August
- 3 March 9 September
- 4 April 10 October
- 5 May 11 November
- 6 June 12 December

Letter in date code	Second 2 di	nd 2 digits in date code				
is the week	are the yea	he year				
A — 1st week B — 2nd week C — 3rd week D — 4th week E — 5th week	91 — 1991 92 — 1992 93 — 1993 94 — 1994 95 — 1995 96 — 1996					

Example: 6A92 = First week of June, 1992

CONVERTING VOLUMES OF GAS (CFH to CFH or CFM to CFM)

Multiply Flow of:	by	to Obtain Flow of:
	0.707	Butane
Air	1.29	Natural Gas
	0.816	Propane
Butane	1.414	Air
	1.826	Natural Gas
	1.154	Propane
Natural Gas	0.775	Air
	0.547	Butane
	0.632	Propane
	1.225	Air
Propane	0.866	Butane
	1.58	Natural Gas

CONVERSION UNITS

Multiply By	To Obta	in
Pressure		
Atmospheres	1.0332	kilograms per square inch
centimeter		0 1 1
Atmospheres	14.70	pounds per square inch
Atmospheres	407.14	inches water
Grams per sq. centimeter	0.0142	pounds per square inch
Inches of mercury	.4912	pounds per square inch
Inches of mercury	1.133	feet of water
Inches of water	0.0361	pounds per square inch
Inches of water	0.0735	inches of mercury
Inches of water Inches of water	0.5781 5.204	ounces per square inch
bar	5.204 100	pounds per square foot kPa
Kilograms per sq. centimeter		pounds per square inch
Kilograms per square meter	0.2048	pounds per square foot
Pounds per square inch	0.0680	atmospheres
Pounds per square inch	0.07031	kilograms per sq. centimeter
Pounds per square inch*	6.89	kPa
Pounds per square inch	2.036	inches of mercury
Pounds per square inch	2.307	feet of water
Pounds per square inch	.06897	bar
Pounds per square inch	27.67	inches of water
kPa	.145	PSI
Length		
Centimeters	0.3937	inches
Feet	0.3048	meters
Feet	30.48	centimeters
Feet	304.8	millimeters
Inches	2.540	centimeters
Inches	25.40	millimeters
Kilometer	0.6214	miles
Meters	1.094	yards
Meters	3.281	Feet
Meters	39.37	inches
Miles (nautical) Miles (statute)	1,853.0 1,609.0	meters meters
Yards	0.9144	meters
Yards	0.9144 91.44	centimeters
iuius	21.44	Centimeters

*Ex. 5 pounds per square inch X (6.89) = 34.45 kPa

CONVERSION UNITS (Cont.)

Multiply	By	To Obtain
Volume		
Cubic centimeter	0.06103	cubic inch
Cubic feet	7.48	gallons (US)
Cubic feet	28.316	liters
Cubic feet	1728	cubic inches
Cubic feet	.03704	cubic yards
Cubic feet	.02832	cubic meters
Gallons (Imperial)	1.201	gallons (US)
Gallons (US)*	0.1337	cubic feet
Gallons (US)	0.8326	gallons (Imperial)
Gallons (US)	3.785	liters
Gallons (US)	231	cubic inches
Liters	0.0353	cubic feet
Liters	0.2642	gallons (US)
Liters	1.057	quarts (US)
Liters	2.113	pints (US)
Pints (US)	0.4732	liters
Miscellaneous		
BTU	252	calories
Calories	3.968	BTU
Ton (US)	2000	pounds
kilogram	2.205	pounds
kilowatt Hour	3412	BTU
Ounces	28.35	grams
Pounds	0.4536	Kilograms
Pounds	453.5924	grams
Ton (US)	.908	tonne
Therm	100,000	BTU
API Bbls	42	gallons (US)
		U

*Ex. 200 US gallons (.1337) = 26.74 cubic feet

Maintenance Log

Serial Number	
Mfg Date	

Next Due							
Initials							
Technician							
Work Done							
Mileage							
Date							

100 RegO Dr. Elon, NC 27244 USA Phone +1.336.226.3244 Fax +1.336.227.6294 Manual LNG-545 Printed in the USA 01-0120-0120 www.regoproducts.com/lng